Two Hours

UMIST

Intengo and Foundation Year Chemistry

1999

The examination consists of three Sections A, B and C. All sections should be answered in one answer book.

Section A This consists of 25 multiple choice questions in which a question is followed by five alternative responses **A**, **B**, **C**, **D** and **E**. 1 mark will be awarded for each correct response. **All questions should be attempted**. You are advised to spend approximately 30 minutes on this Section.

Total 25 marks

Section B This consists of 4 compulsory questions which are each worth 10 marks. You are advised to spend approximately 50 minutes on this Section.

Total 40 marks

Section C This consists of 3 questions **from which you should select only one**. You are advised to spend approximately 40 minutes on this Section.

Total 35 marks

Overall Total 100 marks

Electronic calculators may be used, provided that they **cannot** store text

Section A Answer ALL questions

A 1	A nuclear	reaction	is re	presented	bv	the e	guation
	1 I macical	icaction	15 10	presented	σ_{J}	tile et	quation

 ${}^{9}_{4}\text{Be} + \gamma \rightarrow {}^{8}_{4}\text{Be} + X$

What is the identity of X?

What is the identity of 11

A A neutron

A2 Which of the following statements, concerning S_N 2 reactions, is **incorrect**?

B An α -particle **C** A β -particle **D** A proton

- **A** The reaction occurs via 2 simple reaction steps.
- **B** The reaction involves a transition state.
- **C** The reaction is accompanied by inversion of stereochemistry.
- **D** The reaction is a nucleophilic substitution.
- **E** The reaction is bimolecular.
- A3 The partition coefficient of a solid S between ethoxyethane and water is 3.0. A solution containing 8.0 g of S in 300 cm³ of water is extracted with 100 cm³ of ethoxyethane. What mass of S is extracted from the water?
 - **A** 2.0 g
- **B** 4.0 g
- **C** 6.0 g
- **D** 8.0 g
- **E** 10.0 g

E A neutrino

- A4 How many degenerate d-orbitals are there?
 - **A** 1
- **B** 3
- **C** 5
- **D** 7
- **E** 10

- A5 What is the shape of SF_6 ?
 - A Linear

- **B** Trigonal planar
- C Tetrahedral

- **D** Trigonal bipyramidal
- **E** Octahedral

A6	Which of the following species can act as a Lewis acid?							
	$\mathbf{A} \mathbf{H}_2$	$\mathbf{B} \mathrm{NH}_3$	C Cl	\mathbf{D} BF ₃	E CHCl ₃			
A7	Which of the following molecular formulae corresponds to 2-chloro-3-methylhex-1-ene							
	$A C_6H_{13}Cl$	$\mathbf{B} \mathrm{C}_6 \mathrm{H}_{11} \mathrm{Cl}$	$\mathbf{C} \mathbf{C}_7 \mathbf{H}_{12} \mathbf{Cl}_2$	\mathbf{D} C ₇ H ₁₃ Cl	$\mathbf{E} C_8 H_{12} C l_2$			
A8	Which of the fol	lowing is not an a	addition polymer?					
	A Nylon 6,6		B Polyvinylchlo	olyvinylchloride (PVC) C Polystyrene				
	D Polythene		E Teflon (PTFE)				
A9	The product of the	he reaction betwe	en hex-3-ene and	ozone can yield w	hich carbonyl			
	products?							
	A HCHO and CH ₃ COCH ₃							
	B CH ₃ CH ₂ CHO only C CH ₃ COCH ₃ only D CH ₃ CH ₂ CH ₂ CHO and HCHO							
	E CH ₃ CH ₂ CHO and CH ₃ CHO							
A10	If it takes 25 cm	³ of hydrogen gas	2 mins to effuse t	hrough a tiny hole	e at 25 °C, how long			
	will it take for 25 cm ³ of oxygen to effuse through the same hole under the same conditions?							
	A 1 min	B 2 mins	C 4 mins	D 6 mins	E 8 mins			
A11 How many structural isomers of C ₅ H ₁₁ Cl exist?								
	A 2	B 4	C 6	D 8	E 10			

A12	In which of the following compounds is the bonding most ionic?					
	A sodium bromideD sodium chloride		B sodium fluoride		C sodium iodide	
			E lithium bromide			
A13	In the emission line spectrum of hydrogen, how many lines can be accounted for by all the					
	possible electron	transitions between	een the four lowes	st principle quantu	ım levels?	
	A 2	B 4	C 6	D 10	E 18	
A14	Which of the following	lowing is not a ba	asic assumption of	f the kinetic theor	y of gases?	
	A The particles of	of a given gas hav	e the same kinetic	e energy at a give	n temperature.	
	B Gas particle si	ze is negligible.				
	C Attractive force	ces between the ga	as molecules are r	negligible.		
	D The molecules	s move in straight	lines unless they	collide with one a	nother or the	
	container walls.					
	E The kinetic energy of the molecules in a gas increases as the temperature increases.					
A15	The half-life of a radioactive isotope is 10 years. To three decimal places, what fraction of					
	the isotope's original radioactivity will remain after a period of 50 years?					
	A 0.008	B 0.016	C 0.031	D 0.063	E 0.125	
A16	Which of the following	lowing is not a co	olligative property	?		
	A Depression of freezing point.B Osmotic pressure.C Elevation of boiling point.					
	D Lowering of v	apour pressure.				
	E Solubility.					

A17	The rate expression for the reaction between A and B is $rate = k[A][B]^2$.					
	Which of the following statements about the reaction is not true?					
	A The order of reaction is 2 with respect to B.					
	B Suitable units for the rate constant are mol ⁻² dm ⁶ s ⁻¹					
	C The overall order of the reaction is 3.					
	D The rate of the reaction is halved by halving the concentration of A.					
	E The rate of the reaction is doubled by doubling the concentration of B.					
A18	Toluene (methylbenzene) undergoes two very different reactions with chlorine, depending					
	upon the conditions. The mechanisms of the two reactions are best described as					
	A free radical attack and nucleophilic substitution.					
	B free radical attack and electrophilic substitution.					
	C nucleophilic addition and free radical attack.					
	D nucleophilic addition and nucleophilic substitution.					
	E electrophilic substitution and nucleophilic addition.					
A 10	In which of the following pairs is the radius of the second atom greater than the first?					
Al9						
	A Al and B B F and Cl C Si and C D Na and Li E P and N					
A20	Which of the following is not a line series in the emission spectrum of gaseous hydrogen?					
	A Lyman.					
	B Balmer.					
	C <u>Pascal</u> .					
	D Brackett.					
	E Pfund.					

A21	Which of the following elements has the greatest first ionisation enthalpy?							
	A Be	B B	CC	D N	ΕO			
A22	An electrophile	e is best describe	d as?					
	A A lone pair acceptor.							
	B An electron-	B An electron-rich species.						
	C A Lewis base.							
	D An anion.							
	E An ideal reagent for reaction with an aldehyde or ketone.							
A23	The arrangement of cations in a metal is usually either hexagonal close packing (hcp) or							
	cubic close packing (ccp). In both cases the co-ordination number of the metal cations is							
	A 6	B 8	C 10	D 12	E 14			
A24	A quantity of gas occupies $24.0~\rm{dm^3}$ at $25~\rm{^\circ C}$ and $101325~\rm{Pa}$. What volume will the gas occupy at $200~\rm{^\circ C}$ and $150000~\rm{Pa}$?							
			\mathbf{C} 25.7 dm ³	D 56.4 dm ³	E 129.7 dm ³			

- A25 Which of the following characteristics is untrue of a binary liquid mixture showing a strong negative deviation from Raoult's law?
 - **A** The total vapour pressure over the mixture is lower than would be expected for an ideal mixture.
 - **B** Mixing the two liquids results in an increase in temperature.
 - C The forces between the molecules of the two components are greater than the forces between the molecules within each component.
 - **D** The boiling point-composition diagram of such a mixture will exhibit a maximum boiling point.
 - **E** Regardless of composition, fractional distillation will always yield a distillate richer in the azeotropic mixture.

Section B Answer all questions

B1	Use VSEPR theory to predict the structures of CCl ₄ , AlCl ₃ , NH ₃ , H ₂ S and CO ₂ . You
	should draw a three dimensional representation of each structure and name the geometry.

10 marks

B2 Briefly state what you understand by the terms addition reaction, free radical, canonical form, π -bond and chiral centre.

10 marks

B3 a) State what is meant by the term isotope.

2 marks

- b) Give the symbol and the relative atomic mass of the isotope which is used as the current standard for defining relative atomic masses.

 2 marks
- c) State the number of protons, neutrons and electrons in $^{238}_{92}$ U. 3 marks
- d) A radioactive isotope produces a reading of 120 counts per minute on a Geiger counter.
 After 18 hours, the count rate has fallen to only 15 counts per minute. Calculate the half-life of the isotope.
 3 marks
- B4 Draw and explain the various possible types of curve arising when the vapour pressure of a mixture of two volatile, miscible liquids is plotted against the composition of the mixture.
 You should refer to the ideal case and also two non-ideal cases.
 6 marks
 For the ideal case, draw the boiling point / composition curve.
 1 mark
 Show how the curve you have drawn may be used to explain the process of fractional distillation.
 3 marks

Section C Answer only one question

C1 Treatment of an alcohol **A**, C₄H₁₀O with concentrated sulphuric acid yielded two isomeric hydrocarbons **B** and **C**, C₄H₈. Ozonolysis of **B** yielded methanal and **D**, whilst ozonolysis of **C** yielded only one product **E**. The reaction of **B** with hydrobromic acid yielded **F**, C₄H₉Br. **F** was formed in accordance with Markovnikov's rule.

Explaining your reasoning, give names and structures for compounds $\mathbf{A} - \mathbf{F}$. 30 marks

Explain the significance of the sentence in italics. 5 marks

C2 a) State the first law of thermodynamics.

2 marks

- b) The heat change in a reaction can be expressed as ΔH or ΔU . Explain briefly, the distinction between these two quantities. **6 marks**
- c) Which of the two quantities ΔH and ΔU is more useful in relation to most chemical reactions? Explain your answer.
- d) Construct a Born-Haber cycle for the formation of solid sodium chloride from its elements in their standard states and use the following data to calculate its standard enthalpy of formation.

 13 marks

$Na(s) \rightarrow Na(g)$	$\Delta H = +108 \text{ kJ mol}^{-1}$
$Na(g) \rightarrow Na^{+}(g) + e^{-}$	$\Delta H = +496 \text{ kJ mol}^{-1}$
$1/2Cl_2(g) \rightarrow Cl(g)$	$\Delta H = +122 \text{ kJ mol}^{-1}$
$Cl(g) + e^- \rightarrow Cl^-(g)$	$\Delta H = -348 \text{ kJ mol}^{-1}$
$Cl^{-}(g) + Na^{+}(g) \rightarrow NaCl(s)$	$\Delta H = -769 \text{ kJ mol}^{-1}$

e) Give names for the five enthalpy changes listed above.

10 marks

C3 Starting from quantum numbers and their allowed values, describe the various atomic, electronic orbitals and explain how electrons occupy them. Your answer should explain how quantum numbers lead to our current picture of atomic orbitals. You should discuss the names, shapes and degeneracy of the possible orbitals, the Pauli exclusion principle, the aufbau principle, Hund's rule and electronic configurations. You are NOT expected to discuss any orbital with a principle quantum number greater than 3.

35 marks